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Abstract. Let P ( m )  be the equilibrium probability that a two-dimensional Ising model with 
nearest-neighbour interactions on an N x N lattice be found to have magnetisation m. We 
calculate P ( m )  for T <  T, and find it to agree with certain expectations. Difficulties in the 
use of P ( m )  for interpretation of metastability for a system in an external field are stressed. 
-log P(m)  is used as a potential in a Fokker-Planck equation for the diffusion of m under 
stochastic dynamics and, to the extent that that equation describes the physical system, a 
formula is derived for the lifetime of metastable states. 

1. Introduction 

Let the magnetisation m of a system of V spins be defined by m =Ziui/V. A 
fundamental quantity for the statistical mechanics of these spins is P ( m ) ,  the equilib- 
rium probability that the system has magnetisation m. Although one would have 
thought the properties of P ( m )  for the two-dimensional Ising model to have been 
known since the earliest work in the field, it would appear that it has not actually been 
studied in any detail, although related quantities have received attention. 

Our interest in P ( m )  arises from trying to understand metastability and in examining 
the limitations of the commonly held view that metastability has something to do with a 
secondary peak in P ( m )  (the largest peak corresponding to the stable state). For 
dynamical views of metastability too the logarithm of the equilibrium distribution is in 
some sense a potential in which m moves stochastically. 

We restrict attention to the nearest-neighbour two-dimensional Ising model, 
although the results are expected to have wider applicability. Let the system configura- 
tion be denoted by p = (ul, . . . , U") ,  uj = il, and the energy by 

pairs 

where each nearest-neighbour pair appears in the sum once. Periodic boundary 
conditions are taken on the N x N lattice ( N 2  = V ) .  The zero-field constrained free 
energy is defined by 
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where the sum over configurations CL includes only those having magnetisation m. p, 
the inverse temperature, will throughout this paper be taken larger than pc = 0.44, so 
there is a first-order transition. For h f 0 the constrained free energy merely picks up a 
factor exp(phVm), since the factor exp(ph having the same m. 
The partition function as a function of h is 

a )  is the same for all 

V 

k -0 
Z ( h )  = e x p ( - P F ( m k ) + p h V m k ) ~ e x p ( - P ~ ~ ) ,  (3) 

where mk is the magnetisation when k spins are ‘down’, i.e. 

mk = (V-2k) /  V. (4) 

Equation (3) also defines the total free energy F h .  

external field h is 
In equilibrium the probability of finding the magnetisation with the value m with an 

Ph(m) = exp(--pF(m) +phmVj /Z(h ) .  ( 5 )  

The apparently trivial h dependence in the numerator is deceptive and for meta- 
stability in some sense false, the issue being what states should enter the sum in (2). 
For the present we avoid this murky issue and use the licence suggested by ( 5 )  to 
concentrate on Po, the zero-field distribution. 

Po will be calculated by three methods: 
(i j  Heuristically, arguing in terms of droplets, large and small, to identify the largest 

contributions in the sum (2). 
(ii) Doing the sum in (2) exactly for mk, 0 s k s 6 (and 0 .s V - k s 6 ) .  (This sum, for 

k .s 3, is in fact the only work we have been able to find on P(m)  in the literature (Siegert 
1955). An exact calculation of a quantity related to P, but not equivalent to it, is to be 
found in Gaunt and Baker (1970).j 

(iii) A Monte Carlo technique, applicable for all m, which looks at virtual changes in 
m and computes P (m)  from the transition probability and the principle of detailed 
balance. 

A stochastic evolution can be assigned to the Ising model, and the associated master 
equation can, with rather strong assumptions, be projected to give a Fokker-Planck 
equation for the diffusion of the quantity m. The potential in which m diffuses is 
essentially -log P(m), and the Fokker-Planck equation turns out to yield the Arrhenius 
formula for the lifetime of the metastable state. 

Throughout the paper, and in particular towards the end, we point out the pitfalls of 
trying to understand metastability in terms of probability peaks. Notwithstanding the 
derivation of the quite reasonable Arrhenius formula, our overall conclusion is that this 
is not the best approach to metastability. 

2. Heuristic calculation 

Suppose T (  = 1/p) is well below T, and h = 0. For the infinite system there are two 
values of spontaneous magnetisation, and for the finite system we expect PO to have 
maxima near fm,, the values of the spontaneous magnetisation (corresponding to some 
k, = fN’( 1 - m,)). 
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Consider Po(m) for m = m, + E ,  E being a fixed small positive number. A configura- 
tion contributing to this probability represents a fluctuation away from the most likely 
configurations. The most likely configurations (at a given T )  have some distribution of 
spin-down clusters, and a configuration with m = m, + E will have fewer and smaller 
clusters. If the probability of such a fluctuation occurring in some large volume is p then 
the probability of its occuring in twice the volume isp'. Hence -log(Po(ms + E)/Po(m,)) 
is proportional to V. In terms of free energy this says (approximately) that F(m,+ E )  - 
go is proportional to V. go itself is also proportional to V. 

Now consider Po(m) for m = m, - E .  A magnetisation below m, can be obtained by a 
homogeneous fluctuation throughout the volume, and configurations of this sort give 
contributions (in the sum (2)) which decrease with increasing V, exactly like those in 
Po(m) for m > m,. However, for E not too small there is a cheaper fluctuation (in free 
energy currency) to reduce m. Most of the volume is left at the equilibrium value of m 
(Le., m,) while a small part is at m = -m,, a condition in which its free energy is just as 
low as the +m, state. The only free energy cost comes from the interface. If a volume 
V1 is in the -m, phase, we have 

m V = (m,  - E )  V = m,( V - VI) + (- m,) VI. (6 )  

The length of the interface is 4-E times a geometrical factor g. Solving for VI from (6 )  
and letting IT be the surface tension (free energy/length), 

(7) 

For m well away from m, and near zero, the 'droplet' stretches from one end of the 
system to the other and the length of the interface is just 2N, independent of m. For 
such m we expect 

F ( m  ) - so = (gu/ J 2  m,) J vJm, - m. 

F ( m )  - 90 = 2Nu. (8) 

What stands out in equations (7) and (8) is that F ( m )  -go behaves as JVrather than 
V. Consequently, for large enough V two phase contributions to the free energy are 
more important than ho_mogeneous fluctuations. The depth of the minima at *m, for 
h = 0 is therefore O(JV). Turning on a magnetic field introduces a contribution 
hmV = O( V). For large enough V the magnetic field triumphs and the local minimum 
shrinks to insignificance. This is an important limitation on the idea that a metastable 
state is a local peak in the probability distribution (or local minimum of free energy). 
Note that this limitation would persist had we taken the surface contribution to be V" 
with any U < 1 (not just f), as suggested by some droplet models. One can also see at this 
stage why metastability can be more easily defined for long-range forces, since the 
definition of an interface, essential to the derivation of the dvfactor, can only be made 
with forces that decrease sufficiently rapidly with distance. 

3. Exact calculation of Po(mk), k s 6  

The sum to be evaluated is given in equation (2). (Note that we are actually calculating 
F ( m ) ,  not P.) For k = 0, 1 , 2 , 3  the probabilities have been calculated by Siegert (1955) 
and Yang. With increasing k the numbers and kinds of configurations increase rapidly. 
What must be determined, for each k, is the number of reversed bonds. With the help of 
a computer we have evaluated these numbers and our results are presented in table 1. 
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Table 1. Values of expi-PF(k)) for k < N  =Jv on the N x N  Ising lattice. Q =  
exp(-4/T). Let exp(-PF(k)) = VQ””H(k). Then we further define 

2 k  

L=O 
H ( k ) =  Q2k-‘Gk,. 

Listed below are all non-zero Gk! for the given k. 

k 4: G40 = {V[ V( V-30) + 3231 - 1254)/24, Gdl= V2 -21 V + 118, 
G42=8V-85,  Gd3=18,  G d 4 = I  

k = 5 :  G50= ( V4- 50 V7 + 995 V 2 -  9310 V +  35424)/120, 
G51= V3/3 - 13 V2 + 536V/3 -812, 
G53=30V-400, G54= V+43, G55=8 

G52 = 5 V2- 132V+926, 

4. Stochastic evaluation of P o ( m )  

This is a variant of the Monte Carlo technique, one of whose first uses was the 
evaluation of the partition function for the Ising model (Fosdick 1963). We also use a 
process in which two spins are flipped, conserving magnetisation (see Kalos eta1 1978). 
One can interpret these spin flips as dynamics or as a way of finding the principle 
contribution to the sum (2). 

For given k (or m )  and a (randomly selected) initial configuration we consider the 
configuration generated by flipping one up-spin down and one down-spin up. The 
selection of spin flip candidates is random. If the (double) flip lowers the energy, the 
configuration is so changed. If the flip raises the energy, it is implemented with 
probability exp(-AE/ T ) .  The system then relaxes to those configurations figuring most 
prominently in (2). (For some k and 7 relaxation may be slowed by the kind of 
metastability considered by Kalos et a1 (1 978). We did not study this phenomenon.) 

Next we consider the outcome of a virtual spin flip. That is, we randomly select a 
single spin and evaluate A E  if it were to be flipped. If AE < 0, we record the virtual 
occurrence of a transition. If AE > 0, the virtual transition is recorded with probability 
exp(-AE/ T ) .  

None of these transitions k + k f 1 takes place. ‘The system remains with k spins 
down and only the double spin flips actually change its configuration. A record is kept 
of the number of k + k f 1 flips which would have occurred had the single-flip transition 
been implemented. Then, allowing for the variation in the numbers of available up and 
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down spins for different k, we obtain the ratio of transition probabilities k + k + 1 and 
(starting with the k + 1 states) k + 1 + k. 

By the principle of detailed balance (which has been built into the microscopic 
stochastic dynamics), transition probabilities and the equilibrium distribution are 
related by 

Po(k) W ( k  + k + 1) =Po(k + 1) W ( k  + 1 + k ) ,  (9) 
where W ( k  + j )  is the transition probability for going from k spins down to j spins 
down. All that our double stochastic process obtains, and indeed all that we need, are 
the ratios 

W ( k  + k + 1)/ W ( k  + 1 + k )  =Po(k + 1 ) / P o ( k ) .  (10) 
Having obtained this ratio for all k, we normalise with the condition 

V 

k = O  
Po(k) = 1. (1 1) 

5. Results of the calculations 

The forthcoming results represent a combination of the exact and stochastic methods. 
For k c 6 exact results were used, at the same time checking that the stochastic method 
probability ratios came out reasonably near to the exact values (see table 2). For k 3 7 
stochastic ratios were used. In figure 1 is a typical graph of --log Po against k at T = 2.0 
and N = 19. The minimum value is approximately log 2N, and the curve flattens 
towards m - 0 as expected. The minimum occurs at m values just a bit larger than m,. 

Table 2. Comparison of exact and stochastic probability ratios for k from 0 to 6 spins down. 
Also given are the spontaneous magnetisation (m,) as predicted by the calculated P ( k )  and 
the exact theoretical value. The quantity listed is Q(k)  = log(P(k + l ) /P(k)) .  Note that 
because a logarithm is tabulated it is the smallness of the difference between numbers that is 
significant rather than their ratio. In our units T, = 2.27. 

T =  2.0, N =  19 T = 2.0, N = 15 T = 2.0, N = 13 
k Exact Stochastic Exact Stochastic Exact Stochastic 

1 1.26 1.31 0.827 0.832 0.572 0.552 
2 0,919 0.949 0.517 0.582 0,289 0,268 
3 0.691 0.752 0.320 0.386 0.116 0.158 
4 0,526 0.519 0.183 0.204 0,003 0.012 
5 0.400 0.373 0,085 0,040 -0.075 -0.013 
m, 0.911 0.910 0.911 0,914 0.911 0.914 

T = 1.8, N = 19 T =  1.8, N -  15 T =  1.8, N =  13 
k Exact Stochastic Exact Stochastic Exact Stochastic 
- - 
1 0.836 0.883 0.411 0,421 0.165 0.141 
2 0.510 0.550 0.126 0.147 -0,088 0,001 
3 0,298 0.404 -0~048 -0,048 -0.232 -0.226 
4 0.145 0.062 -0.162 -0.149 -0.317 -0.348 
5 0.038 0.011 -0.238 -0.252 -0.368 -0.280 
m, 0.95686 0,95836 0.956 86 0.956 43 0.956 86 0.956 64 
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Figure 1. -log PO against k (number of spins dowrr) for T =  2.0, N = 19. 

To check the heuristic assertions of § 2 we first note table 3. There we study the N 
dependence of the height of tke maximum at m - 0. We think the case is good for that 
difference behaving as N(=JV) rather than NZ. In figure 2 is a plot of (log Po)2 against 
m (again T = 2.0, N = 19). By equation (7), for m > m, and until the curve flattens, 
(logPo)' should be a straight line, and indeed the fit to a straight line seems good. 
Moreover, for various N, values of gcr can be deduced from the straight-line fit. An 
estimate of (T alone can be obtained from table 3 and formula (8). Thus at T = 2.0, cr is 
about 0.7. For lower temperatures U is found to rise (data not in table 3), and at T = 1.0 
approaches 2.0, which is the energy cost of a broken bond, showing essentially no 
entropy contribution at this low temperature. 

Finally we check that, for Im I > m,, log Po does indeed scale as N2 = V. In figure 3 is 
plotted [-logPo-(logPo)min]/N2 for various N at T = 2.0. The constant is put in to 
take care-approximately-of overall normalisation. The curves are seen to be 

Table 3. Probability of m = 0 for systems with spontaneous magnetisation (T< T,) as a 
function of system size. Listed below is AF = T[(-log P)" - (-log &in] for various N(on 
an N x N lattice), where the maximum occurs near m = 0 and the minimum at m near m., 
the spontaneous magnetisation. 

T = 2.0 T = 1.8 
- 

N AF AFIN AFIN2 AF AFIN AFIN' 

7 12.9 1.84 0.26 
9 13.9 1.55 0.17 
10 14.4 1.44 0.14 
12 16.5 1.37 0.11 
14 19.7 1.4 0.10 
15 19.8 1.32 0.08 
17 23.0 1.35 0.08 
19 25.5 1.34 0.07 

15.2 2.17 0.31 
19.9 2.21 0.25 
21.4 2.14 0.21 
25.3 2.10 0.18 
27.6 1.97 0.14 
28.8 1.92 0.13 
33.1 1.95 0.11 
38.9 2.04 0.11 
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Figure 2. (log Po)' against k for T = 2.0, N = 19. 
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Figure 3. -{log PO),"' against m for T = 2.0, various N. 

reasonably parallel to one another for m > m, while for m C m, the incorrectness of the 
1 / N 2  scaling causes them to separate. 

There is one significant, if puzzling, feature of figure 2 to which we call attention. 
Note that the straight-line fit to (log Po)' seems to pass through 0 at m = m, rather than 
through log N. This feature is borne out by other graphs (at other T and N) not 
reproduced here. Of course it is only the extrapolation of the line that hits zero, as the 
form (7) does not hold so close to m,. We remark that this property does not arise 
because of any confusion of k versus m dependence, as the graphs in question have the 
same normalisation for all values of k (i.e. equation (11)). It may seem strange to worry 
about log N terms, but in the next section this will be seen to be crucial for the recovery 
of the Arrhenius formula. 
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We summarise our results for Po, expressed in terms of the function F ( m ) :  
(a) For m >m,, 

F(m)=NZr$(m)+p-’ logN+95.  ( 1 2 )  

Equation (12 )  defines r$ as a function independent of N but depending on T and m. We 
take r$(m,) = 0. 

(b) For m, - E > m > m,(l - S/g’) - im, ( E  to be specified below), 
-- 

F (  m ) = (gdV/ J 2  m,) Jm, - m + go. ( 1 3 )  

(c) For 0 S m S m,(l - S/g’), 

F ( m )  = 2Nu + go. (14) 

For m <0, F( -m)  = F ( m ) .  An overall constant may be added to all terms to allow for 
& or dm normalisation. 

For h # 0, defining Fh(m) in the obvious way, 

Fh(m)=F(m)-hmN’+(9h-90). (15) 

There is a small but important range, m, - E < m < m,, within which we have not 
given F ( m ) ,  nor have we given a precise estimate of E .  Within this range the single large 
droplet competes with the volume distribution of smaller droplets as major contribu- 
tions to Po. An estimate of the size of the region can be obtained by postulating that 
F ( m )  of (12) extends below m, and seeing where the competing terms of ( 1 2 )  and (13 )  
are equal. We shall show below that 4’(ms) = 0, and we therefore set 

- -  
~N24”(m,) (m,  - m)’ +log N = guNJm, - m/ J2m,. (16) 

Neglecting terms O((1og N ) / N ) ,  this yields for the value of m at which surface energy 
begins to dominate (coming from above) 

We have in effect continued the function d, to a region below m,, a region whose size 
shrinks to zero with increasing N. There is reason to believe that in the thermodynamic 
limit 4 cannot be continued to real m below m,, and equation (17) therefore seems 
quite reasonable. We do not have any simple form for F ( m )  in the range m, - E < m < 
m,, and we shall keep further developments independent of F in that range. 

The function 4 ( m )  has thermodynamicsignificance. In general the expectation of m 
at non-zero h is given by 

Since Fh(m)  grows with N, for sufficiently large N the integral is dominated by that m 
for which F h ( m )  is a minimum. From the condition aFh(m)/am = 0 we have 

ar$(m)/am = h, (19) 

which is an implicit equation for m(h)  as a function of h. Note that, as hJ0,  m 
approaches m,, and ad,(m,)/am is zero as claimed earlier. The significance of the 
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function 4 is therefore that the inverse function of its derivative is the magnetisation as 
a function of h. Similarly 

a2+/am2 = 1/x,  (20) 

with x the susceptibility. 

6. The Fokker-Planck equation and the Arrhenius formula 

Let there be given some stochastic evolution for the Ising model and let p ( p ,  t )  be the 
probability that the system be found in configuration p at time t. Then p satisfies a 
master equation 

where W ( p  + p ’ )  is the transition probability from I.( to p’ ,  and X i s  a 2NZ x 2N2 matrix. 
By virtue of the detailed balance condition (which we assume for the process) relating W 
to the equilibrium distribution p(p)  (= exp(-pE(p))/Z),  equation (21) has a sta- 
tionary state, namely p ( p )  itself. 

This suggests a definition of the metastable state as an eigenstate of X with small 
positive eigenvalue. (From detailed balance it is not hard to prove that all eigenvalues 
of Yc? are non-negative and for ergodic transition elements the ground state is non- 
degenerate.) We consider this suggestion promising, although in the form just stated it 
is untenable, at least in the thermodynamic limit. Even for finite systems there is still a 
problem of interpretation, since the orthogonality of this excited state to the ground 
state requires that the ‘metastable probability distribution’ assume negative values for 
some I.(. 

Let P(m, t )  be the probability that the system has magnetisation m (in this section 
the equilibrium distribution will be indicated by putting a bar over P). It satisfies 
P(m, t ) = I ; p ( p ,  t ) ,  the sum being over those I.( with magnetisation m. To get a 
dynamical equation for P by projecting from that for p (equation (21)), some rather 
restrictive assumptions must be made. 

In particular, products p ( p ’ ,  t )  W(p’+= I.() are replaced by P(m, t )W(m += m i d m ) ,  
thereby neglecting microscopic correlations. The projection can then be carried out in a 
straightforward manner and the result is the Fokker-Planck equation for the prob- 
ability distribution P(m, t ) ,  

r aP(m, t)/at = a2p/am2+a(U1P)/am, (22) 

where U ( m )  = Fh(m) and the prime is a/am. If time is measured in units such that there 
are N 2  spin flip attempts per second (corresponding to each spin interacting once per 
second), then r = O(N2).  

The outstanding feature of equation (22) is the fact that the function U = @Fh(m) 
that enters is just the same as that calculated above. Interpreting (22) as a diffusion 
equation, U is the potential in which the stochastic collective variable m = I; a / N 2  
diffuses. 



246 L S Schulman 

then the spectrum of H is non-negative and has 0 as a non-degenerate eigenvalue for 
the eigenvector pk(m) = exp(-U(m)), which is the equilibrium distribution, up to 
normalisation. 

In this context too it is natural to propose that higher eigenvectors of H correspond 
to the metastable state, and indeed such a suggestion has been put forth in the literature 
by Tomita et a1 (1976). (Tomita et a1 assume, however, that the maximum in U 
between its two minima is high enough that increasing N leaves it unscathed even with 
non-zero h. Since this property holds only for infinite-range forces, their calculations 
do not cover the case of short-range forces.) 

We next apply a similarity transformation (van Kampen 1977) to equation (23), 
defining K = QHQ-' and 4 = QP with Q the multiplication operator by the function 
exp(-U(m)/2). Thep 

K = -a2/am2 + V, with V = ( U'/2)2 - U"/2, (24) 
and the spectrum of K is the same as that of H. To verify that r = O ( N 2 )  gives the 
appropriate time scale, as stated after equation (22), we can consider m near the stable 
minimum, near which U = f a N 2 ( m  - 6)' with CY = O(1). This makes K essentially the 
Hamiltonian of a harmonic oscillator of frequency aN2,  so that the energy of the first 
excited state localised near f i  is just aN2.  For r = O ( N 2 )  this says that the relaxation 
time for states near equilibrium is independent of size, which is appropriate for systems 
in which the heat bath and the external field are assumed to permeate the lattice. (In 
general the relaxation rate from a state Y with eigenvalue E, is (E, -Eo)/T. Eo is 0.) 

Now consider the use of equation (23) for metastability. Before going to the 
detailed form of U derived above, we argue generally. The assumed form of U is 
shown in figure 4. The locations of the right and left minima of U are denoted mR and 

m- 

Figure 4. General form of V ( m ) .  
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mL respectively, and mo is the position of the maximum between them. Corresponding 
values of U and its derivatives at these points are &noted UR, UZ, etc. 

The metastable state is assumed to be the lowest excited state of H ;  we call its 
energy Em,. For the operator K ,  E,, satisfies the variational principle 

for all 4 orthogonal to the ground state (do = exp(- U/2)). In terms of H (which is not 
Hermitian) this implies 

E m s s  J eUP*(m)HP(m) dm/[ euP*(m)P(m) dm (2.5) 

for all P such that 

Guessing that, for m < mo, P should resemble an equilibrium state, we take as a trial 
wavefunction 

P(m)  = e(m) e-u(m), (27) 

where 8 is expected to be about 1 for m € mo. We further assume a priori that 8 is 
nearly constant except near mo, and that for m > mR and m < mL it is precisely constant. 
Substituting in equation (26) and using Laplace's method yields 

o = ( l / . J Z ) e ( m L )  (l /JvL)e(mR)e-UR. (28) 

Taking 8(m,) to be 1 (so that P is not normalised to 1) we get 

8(mR) = - . '~Qu;  e-'UL-UR'. 

For any non-zero h, UL- UR is proportional to N2 (= V ) ,  showing that 0(mR) is 
extremely small. 

The interesting calculation arises when (27) is substituted into (2.5). The integral in 
the denominator is evaluated using Laplace's method: 

and the second term in the sum is negligible. 
For the numerator, 

J' e"pHp = -eel e - U  

The integrated term vanishes, since by assumption 8' = 0 at m = *l. The variational 
principle has thus been reduced to minimising the integral 

subject to the boundary conditions at mR and mL. But this yields the equation of a 
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classical particle with non-constant mass. The solution is 

Collecting all our results yields 

Bearing in mind that U is PF, this shows a strong resemblance to the Arrhenius formula, 
and in fact for the U calculated above will yield that formula. 

Tomita et a1 (1976) give a formula differing from (34) only in an overall factor using 
the WKB approximation. Because our formula provides a rigorous lower bound 
(subject to a single approximation), we thought it worthwhile to present its derivation. 
The sole approximation is the use of the Laplace method for a one-dimensional integral 
and, should one wish, it is not difficult to obtain error estimates for that method. 

For the remainder of this paper the inequality of equation (34) will be treated as an 
equality, since both our physical considerations and the calculation of Tomita et a1 
(1976) suggest that it is not very different. 

It remains to use the results of our calculation of U to see the implications of (34) for 
the Ising model. 

By equations (12)-(15), for some small positive h, U has the form shown in figure 4. 
We shall assume that mo falls in the region of Fo(m)’s square-root dependence. This is 
where the concept of a critical droplet is relevant. Thus mo is found by setting 
aFh/dm = 0, using Fh as obtained from equations (13) and (15). This yields 

mo = -m, + ( g ~ / 2 J % & ) ~ / h ~ N ~ .  (35) 
Note that, for sufficiently large N, mo moves into the transition region defined by 
equation (17) (since N-’ must get smaller than constant x N-2’3). 

Next we wish to use the form (12) for F in the region m > -m,. This can only be 
valid for sufficiently small N, since (12) is based on the dominance of those fluctuations 
that take place throughout the volume. Using (12), mL is given by 

4’(mL) = h or mL=-m,+2h/p”,  (36) 

where in the second equation a quadratic approximation has been used for 4. Equation 
(36) also shows that the distance from -m, at which we wish to use (12) depends on h. 

Also required are Uo- UL, UL and Uo. For U” at mL we again use the form (12). 
Any error arising from this cannot affect our results very much, since U” entered as an 
area arising from an integration (in normalising P ) ,  and even if Fo(vn) were suddenly to 
rise steeply to the right of -m, it could at most affect the area by a factor 2. Hence at mL 

(37) U”(mL) Î pN24”(ms) = pN2/,y, 

with ,y the susceptibility (equation (20)). For U. we take a second derivative of Fh at mo 
to obtain 

U“(m0) = -4N4h3m,/3/g2a2. (38) 

V(m0) - I/(mL) = U(m0) - U(-m,) = pg2g2/4m,h -log N. 

Finally, we require 

(39) 

Both in (37) and more seriously in (39) mL has been replaced by -m,. Any better 
estimate would require information on the form of Fo(m) to the right of -m,, precisely 
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in the transition region. Hence our subsequent results are accurate only modulo this 
imprecision. Aside from this problem (39) has a very satisfying form. To see this we 
first substitute (37) and (38) into (34) to get 

&t first sight this seems to give the strange result that rate = O ( N 3 / r )  = O ( N )  = 
O(JV). However, the log N term in (39), whose appearance we found numerically but 
for which we had no theoretical explanation, puts things right and gives us a rate 
proportional to volume. To summarise, 

which is the Arrhenius formula. The particular dependence of h in the denominator of 
the exponent has been noted on several previous occasions (Langer 1967, Capocaccia et 
a1 1974, McCraw and Schulman 1978) and to some extent has motivated suggestions of 
an essential singularity at first-order phase transitions. 

The foregoing discussion is unsatisfactory on a number of counts. In particular, with 
increasing N the range of validity with respect to h (cf equation (36)) shrinks to zero. 
Moreover, the spread of the ‘metastable eigenstate’ for m > -m, appears to be only 
1/ V rather than I/ J V, as should be the case for a state resembling an equilibrium state. 

Our feeling is that at least some of the above problems arise from the projection 
from microscopic ccnfiguration space { p }  to the single variable m. Hence there may be 
states with Am -JVwhich contribute to the metastable free energy and which do not 
contain critical or transcritical droplets. These are distinguished from states containing 
large droplets through the use of other variables (in effect one constrains the sum over 
states in ways beyond merely fixing m ) .  Also the formula acp/am = h would then carry 
over to finite values of h with the understanding that other variables in the argument of 
q!~ take values such that the equation is meaningful (through the exclusion of trans- 
critical droplets). Unfortunately, we do not have a good candidate for the additional 
variables and so cannot improve on the admittedly flawed treatment given above. 

7. Summary and concluding remarks 

The calculated and stochastically computed probability distribution agrees quite well 
with what one expects on heuristic grounds. There is, however, a ;log V term that 
enters the free energy for which we do not have an explanation. 

The probability distribution for non-zero external field ( h )  is related in a simple way 
to that for h = 0. However, for h macroscopically different from zero, this simple form 
probably does not have much to do with metastability. Understanding metastability 
through probability distributions would seem to require a finer set of constraints than 
merely fixing m. Ideas of this sort have appeared in the literature, but they are not 
without problems. (The techniques of Penrose and Lebowitz (1971) would seem to 
apply only where the forces ultimately become infinite-range. Capocaccia et a1 (1974) 
effectively limit droplet size. But if the limitation is only for very large droplets, then 
transcritical droplet contributions will dominate the metastable free energy. If the limit 



250 L S Schulman 

is of the order of the droplet size, the definition of the metastable state will be dependent 
on cut-off.) 

The Arrhenius formula for the decay rate of a metastable state was derived with a 
specific prediction as to its dependence on surface tension, susceptibility and other 
quantities. The correct volume dependence was obtained only with the aid of the 
unexplained 1 log V term. 

We observe finally that analytic continuation of the free energy from the stable to 
the metastable domain (done perhaps by the method of Newman and Schulman (1977)) 
would seem to avoid many of the pitfalls of approaches based on constrained prob- 
ability distributions. Perhaps this approach, because it does not define the metastable 
state (as a probability distribution on microscopic configuration space), is less demand- 
ing and more able to succeed. The evidence of McCraw and Schulman (1978) suggests 
that the analytic continuation can be carried out. The off-axis branch points observed 
there are probably an artefact of the specific method of continuation and in a way 
analogous to the model studied by Schulman eta1 (1978) we expect to find that the free 
energy function itself has a branch cut only along the negative real h axis. 
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